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(1) State and prove the Bolzona Weierstrass theorem for Rn (for n > 1). (2+4=6 marks)

Statement: If a bounded set S in Rn contains infinitely many points, then there is at least
one point in Rn which is a limit point of S.
Proof: Since S is bounded, S lies in some ball of radius r > 0 and hence lies in

J1 = I
(1)
1 × I

(1)
2 × · · · I(1)n = {(x1, x2, · · · , xn) : −r ≤ xj ≤ r ∀ 1 ≤ j ≤ n}.

Each interval I
(1)
j can be subdivided into two intervals I

(2)
j,1 = {xj : −r ≤ xk ≤ 0} and

I
(2)
j,2 = {xj : 0 ≤ xk ≤ r}. There are 2n sets I

(1)
1,k1
× · · · × I(1)n,kn

for some ki = 1, 2. The
union of these 2n sets is J1. S contains infinitely many points, so does J1 and hence one

of the 2n sets, say J2 = I
(2)
1 ×· · ·×I

(2)
n must contain infinitely many points of S. Similarly

bisecting I
(2)
n and repeating the process, we obtain Jm as n−cartesian product I

(m)
1 × I(m)

n

of intervals of length 22−mr. Let I
(m)
j = [a

(m)
j , b

(m)
j ]. Since b

(m)
j − a(m)

j = 22−mr, we have

sup
m
a
(m)
j = inf

m
b
(m)
j = tj (say).

Since t = (t1, · · · , tn) ∈ Ji ∀i, any ball Bε(t) of radius ε > 0 centered at t = (t1, · · · , tn)
contains Jm for m such that 22−mr < ε/2. But by the choice of J ′is, there are infinitely
many points of S in Ji. Hence Bε(t) contains infinitely many points of S. Thus t is a
limit point of S.
Reference: Apostol’s Analysis.

(2) Let n ≥ 1 be an integer. Consider the three metrics on Rn, the l1, l2 and l∞ metrics.
Prove that the topologies on Rn induced by these three metrics are the same. (10
marks)

Proof: Let |.|1, |.|2, |.|∞ denote the norm in l!, l2, l∞ respectively with respective metrics
d1, d2, d∞. Let τi denote the topology generated by the finite closures and arbitrary unions
over all sets in the basis Bi = {x ∈ Rn : |x|i < r}, ∀ i = 1, 2,∞.

It is enough to prove that the Basis are same in order to prove that the topologies are
same: Suppose τi, τj are topologies with the same basis Bi = Bj but τ1 6= τj. Suppose
V ∈ τ1. There exists a collection of open sets Uα ∈ Bi = Bj such that V = ∪αUα ∈ τj,
since Bi = Bj.

Now we prove that Bi = Bj for all i, j = 1, 2,∞. The norms are defined as

|x|i = (|x1|i + · · ·+ |xn|i)1/i ∀ i = 1, 2

|x|∞ = sup
j
{|xj|}
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We have

|x|∞ = supj{|xj|} ≤ (
n∑
j=1

|xj|i)1/i ≤ n1/i|x|∞

for all i = 1, 2. Hence Bi ⊂ B∞ ⊂ Bi for all i = 1, 2, that is B1 = B∞ = B2.

(3) True or False (give reasons):

(a) Q (with standard metric) is connected. (3 marks)

False. With the standard metric, any open set in Q is of the form S = (a, b)∩Q (or
union of such sets). Let c be an irrational number between a and b. Then S = S1∩S2

where S1 = (a, c) ∩Q and S2 = (c, b) ∩Q. Hence Q is not connected.

(b) Any linear map f : Rn → Rm is uniformly continuous. (3 marks)

True. Suppose f(x) is given by Ax where the matrix satisfies ‖A‖ = 0. Then
clearly it is uniformly continuous. Suppose ‖A‖ 6= 0. Then for every ε > 0, choose
δ = ε‖A‖−1, we get |f(x)−f(y)| = |Ax−Ay| ≤ ‖A‖|x−y| < ε whenever |x−y| < δ.
Hence f is uniformly continuous.

(c) Any real valued continuous function on a compact metric space has a maximum
and a minimum. (3 marks)

True. Let f : X → R be a real valued continuous function on a compact metric
space X. Continuous image of a compact set is compact. Any compact set in R
is closed and bounded. Hence f(X) is bounded. Also since f(X) is closed both
infimum (minimum) and supremum (maximum) are obtained.

(d) A continuous map from a compact metric space to any metric space is uniformly
continuous. (3 marks)

True. Let f : X → Y be a continuous map on a compact metric space X. Since
f is continuous, for every ε > 0 there exists a δx such that |x1 − x2| < δ =⇒
|f(x1) − f(x2)| < ε. Now ∪xBδx(x) is an open cover of X. X is compact implies
that there are finitely many δ′is among all δ′xs such that ∪Ni=1Bδi(xi) cover X. Choose
δ = min{δi}i. Hence the uniform continuity.

(4) Define f : R2 → R by f(x, y) = xy√
x2+y2

if (x, y) 6= (0, 0) and f(0, 0) = 0. Is f

continuous at all points of R2? Is f differentiable at all points of R2? Does f have
directional derivatives at (0, 0) in every direction? Justify all your answers. (3+3+4=
10 marks)

Solution: f is continuous at all points. Since 2xy ≤ x2 +y2 we have
∣∣ xy√

x2+y2

∣∣ ≤ ∣∣√x2+y2

2

∣∣.
Hence the continuity for all points.

Note that the partial derivatives of f exists but does not coincide. ∂xf(x, y) = y3

(x2+y2)3/2

and ∂yf(x, y) = x3

(x2+y2)3/2
. Moreover, the partial derivatives at the origin is zero. If the
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derivative Dfx ≡ 0 exists at (0, 0), then lim |f(h1,h2)|
|(h1,h2)| = 0. But |f(h1,h2)||(h1,h2)| = 1

2
along the line

h2 = h1 which is a contradiction.
Directional derivative in the direction u = (u1, u2) at (0, 0) is given by

Duf(0, 0) = lim
h→0

f(0 + hu1, 0 + hu2)− f(0, 0)

h
=

u1u2√
u21 + u22

(5) Let f : Rn → Rm be a differentiable map. Define g : Rn → Rn+m to be the map
g(x1, · · · , xn) = (x1, · · · , xn, f(x1, · · · , xn)). What is the derivative of g in terms of
the derivative of f? Justify your answer. (6 marks)

Solution: Since f is a differentiable map, there exists a linear transformation Df : Rn →
Rm such that

limh→0
|f(x+ h)− f(x)−Dfh|

|h|
= 0.

Consider the linear map Dg : Rn → Rn+m defined by Dgx = (x,Dfx). Then we have

|g(x+ h)− g(x)−Dgh|
|h|

=
|(0, · · · , 0, f(x+ h)− f(x)−Dfh)|

|h|

=⇒ lim
h→0

|g(x+ h)− g(x)−Dgh|
|h|

= 0

(6) Let E ⊂ Rn be an open subset and let f : E → R be a real valued function such
that all the partial derivatives of f are bounded in E. Prove that f is continuous in
E. (6 marks)

Given that the partial derivatives are bounded. Let |∂if | ≤M for all i. Now,

|f(x1 + h1, · · · .xn + hn)− f(x1, · · · , xn)|
= |f(x1 + h1, · · · , xn + hn)− f(x1, x2 + h2, · · · , xn + hn)

+f(x1, x2 + h2, · · · , xn + hn)− f(x1, x2, x3 + h3, · · · , xn + hn) + · · ·
+f(x1, · · · , xn−1, xn + hn)− f(x1, · · · , xn−1, xn)|

By mean value theorem, there exists a ti ∈ (xi−δi, xi+δi) for all i such that (x1−δ1, x1 +
δ1)× · · · × (xn − δn, xn + δn) ⊂ E and

|f(x1 + h1, · · · .xn + hn)− f(x1, · · · , xn)|
= |h1∂1f(x1, x2 + h2, · · · , xn + hn)

+h2∂2f(x1, x2, x3 + h3, · · · , xn + hn) + · · ·
+hn∂f(x1, · · · , xn−1, xn)|
≤M(|h1|+ · · ·+ |hn|)

Hence the continuity.

3


