(1) State and prove the Bolzona Weierstrass theorem for \mathbb{R}^n (for n > 1). (2+4=6 marks)

Statement: If a bounded set S in \mathbb{R}^n contains infinitely many points, then there is at least one point in \mathbb{R}^n which is a limit point of S.

Proof: Since S is bounded, S lies in some ball of radius r > 0 and hence lies in

$$J_1 = I_1^{(1)} \times I_2^{(1)} \times \cdots \times I_n^{(1)} = \{ (x_1, x_2, \cdots, x_n) : -r \le x_j \le r \ \forall \ 1 \le j \le n \}.$$

Each interval $I_j^{(1)}$ can be subdivided into two intervals $I_{j,1}^{(2)} = \{x_j : -r \leq x_k \leq 0\}$ and $I_{j,2}^{(2)} = \{x_j : 0 \leq x_k \leq r\}$. There are 2^n sets $I_{1,k_1}^{(1)} \times \cdots \times I_{n,k_n}^{(1)}$ for some $k_i = 1, 2$. The union of these 2^n sets is J_1 . S contains infinitely many points, so does J_1 and hence one of the 2^n sets, say $J_2 = I_1^{(2)} \times \cdots \times I_n^{(2)}$ must contain infinitely many points of S. Similarly bisecting $I_n^{(2)}$ and repeating the process, we obtain J_m as n-cartesian product $I_1^{(m)} \times I_n^{(m)}$ of intervals of length $2^{2-m}r$. Let $I_j^{(m)} = [a_j^{(m)}, b_j^{(m)}]$. Since $b_j^{(m)} - a_j^{(m)} = 2^{2-m}r$, we have

$$\sup_{m} a_{j}^{(m)} = \inf_{m} b_{j}^{(m)} = t_{j} \ (say).$$

Since $t = (t_1, \dots, t_n) \in J_i \ \forall i$, any ball $B_{\epsilon}(t)$ of radius $\epsilon > 0$ centered at $t = (t_1, \dots, t_n)$ contains J_m for m such that $2^{2-m}r < \epsilon/2$. But by the choice of J'_is , there are infinitely many points of S in J_i . Hence $B_{\epsilon}(t)$ contains infinitely many points of S. Thus t is a limit point of S.

Reference: Apostol's Analysis.

(2) Let $n \ge 1$ be an integer. Consider the three metrics on \mathbb{R}^n , the l^1, l^2 and l^∞ metrics. Prove that the topologies on \mathbb{R}^n induced by these three metrics are the same. (10 marks)

Proof: Let $|.|_1, |.|_2, |.|_\infty$ denote the norm in l_1, l_2, l_∞ respectively with respective metrics d_1, d_2, d_∞ . Let τ_i denote the topology generated by the finite closures and arbitrary unions over all sets in the basis $\mathcal{B}_i = \{x \in \mathbb{R}^n : |x|_i < r\}, \forall i = 1, 2, \infty$.

It is enough to prove that the Basis are same in order to prove that the topologies are same: Suppose τ_i, τ_j are topologies with the same basis $\mathcal{B}_i = \mathcal{B}_j$ but $\tau_1 \neq \tau_j$. Suppose $V \in \tau_1$. There exists a collection of open sets $U_\alpha \in \mathcal{B}_i = \mathcal{B}_j$ such that $V = \bigcup_\alpha U_\alpha \in \tau_j$, since $\mathcal{B}_i = \mathcal{B}_j$.

Now we prove that $\mathcal{B}_i = \mathcal{B}_j$ for all $i, j = 1, 2, \infty$. The norms are defined as

$$|x|_{i} = (|x_{1}|^{i} + \dots + |x_{n}|^{i})^{1/i} \forall i = 1, 2$$

$$|x|_{\infty} = \sup_{j} \{|x_{j}|\}$$

We have

$$|x|_{\infty} = \sup_{j} \{|x_{j}|\} \le (\sum_{j=1}^{n} |x_{j}|^{i})^{1/i} \le n^{1/i} |x|_{\infty}$$

for all i = 1, 2. Hence $\mathcal{B}_i \subset \mathcal{B}_\infty \subset \mathcal{B}_i$ for all i = 1, 2, that is $\mathcal{B}_1 = \mathcal{B}\infty = \mathcal{B}_2$.

(3) True or False (give reasons):

(a) \mathbb{Q} (with standard metric) is connected.

(3 marks)

False. With the standard metric, any open set in \mathbb{Q} is of the form $S = (a, b) \cap \mathbb{Q}$ (or union of such sets). Let c be an irrational number between a and b. Then $S = S_1 \cap S_2$ where $S_1 = (a, c) \cap \mathbb{Q}$ and $S_2 = (c, b) \cap \mathbb{Q}$. Hence \mathbb{Q} is not connected.

(b) Any linear map $f : \mathbb{R}^n \to \mathbb{R}^m$ is uniformly continuous. (3 marks) *True.* Suppose f(x) is given by Ax where the matrix satisfies ||A|| = 0. Then clearly it is uniformly continuous. Suppose $||A|| \neq 0$. Then for every $\epsilon > 0$, choose $\delta = \epsilon ||A||^{-1}$, we get $|f(x) - f(y)| = |Ax - Ay| \le ||A|| |x - y| < \epsilon$ whenever $|x - y| < \delta$. Hence f is uniformly continuous.

(c) Any real valued continuous function on a compact metric space has a maximum and a minimum. (3 marks)

True. Let $f : X \to \mathbb{R}$ be a real valued continuous function on a compact metric space X. Continuous image of a compact set is compact. Any compact set in \mathbb{R} is closed and bounded. Hence f(X) is bounded. Also since f(X) is closed both infimum (minimum) and supremum (maximum) are obtained.

(d) A continuous map from a compact metric space to any metric space is uniformly continuous.
(3 marks)
True. Let f : X → Y be a continuous map on a compact metric space X. Since f is continuous, for every ε > 0 there exists a δ_x such that |x₁ - x₂| < δ ⇒

 $|f(x_1) - f(x_2)| < \epsilon$. Now $\bigcup_x B_{\delta_x}(x)$ is an open cover of X. X is compact implies that there are finitely many $\delta'_i s$ among all $\delta'_x s$ such that $\bigcup_{i=1}^N B_{\delta_i}(x_i)$ cover X. Choose $\delta = \min\{\delta_i\}_i$. Hence the uniform continuity.

(4) Define $f : \mathbb{R}^2 \to \mathbb{R}$ by $f(x, y) = \frac{xy}{\sqrt{x^2 + y^2}}$ if $(x, y) \neq (0, 0)$ and f(0, 0) = 0. Is f continuous at all points of \mathbb{R}^2 ? Is f differentiable at all points of \mathbb{R}^2 ? Does f have directional derivatives at (0, 0) in every direction? Justify all your answers. (3+3+4=10 marks)

Solution: f is continuous at all points. Since $2xy \le x^2 + y^2$ we have $\left|\frac{xy}{\sqrt{x^2+y^2}}\right| \le \left|\frac{\sqrt{x^2+y^2}}{2}\right|$. Hence the continuity for all points.

Note that the partial derivatives of f exists but does not coincide. $\partial_x f(x,y) = \frac{y^3}{(x^2+y^2)^{3/2}}$ and $\partial_y f(x,y) = \frac{x^3}{(x^2+y^2)^{3/2}}$. Moreover, the partial derivatives at the origin is zero. If the derivative $D_f x \equiv 0$ exists at (0,0), then $\lim \frac{|f(h_1,h_2)|}{|(h_1,h_2)|} = 0$. But $\frac{|f(h_1,h_2)|}{|(h_1,h_2)|} = \frac{1}{2}$ along the line $h_2 = h_1$ which is a contradiction.

Directional derivative in the direction $u = (u_1, u_2)$ at (0, 0) is given by

$$D_u f(0,0) = \lim_{h \to 0} \frac{f(0+hu_1, 0+hu_2) - f(0,0)}{h} = \frac{u_1 u_2}{\sqrt{u_1^2 + u_2^2}}$$

(5) Let $f : \mathbb{R}^n \to \mathbb{R}^m$ be a differentiable map. Define $g : \mathbb{R}^n \to \mathbb{R}^{n+m}$ to be the map $g(x_1, \dots, x_n) = (x_1, \dots, x_n, f(x_1, \dots, x_n))$. What is the derivative of g in terms of the derivative of f? Justify your answer. (6 marks)

Solution: Since f is a differentiable map, there exists a linear transformation $D_f : \mathbb{R}^n \to \mathbb{R}^m$ such that

$$\lim_{h \to 0} \frac{|f(x+h) - f(x) - D_f h|}{|h|} = 0$$

Consider the linear map $D_g: \mathbb{R}^n \to \mathbb{R}^{n+m}$ defined by $D_g x = (x, D_f x)$. Then we have

$$\frac{|g(x+h) - g(x) - D_g h|}{|h|} = \frac{|(0, \cdots, 0, f(x+h) - f(x) - D_f h)|}{|h|}$$
$$\implies \lim_{h \to 0} \frac{|g(x+h) - g(x) - D_g h|}{|h|} = 0$$

(6) Let $E \subset \mathbb{R}^n$ be an open subset and let $f : E \to \mathbb{R}$ be a real valued function such that all the partial derivatives of f are bounded in E. Prove that f is continuous in E. (6 marks)

Given that the partial derivatives are bounded. Let $|\partial_i f| \leq M$ for all *i*. Now,

$$\begin{aligned} |f(x_1 + h_1, \cdots, x_n + h_n) - f(x_1, \cdots, x_n)| \\ &= |f(x_1 + h_1, \cdots, x_n + h_n) - f(x_1, x_2 + h_2, \cdots, x_n + h_n) \\ &+ f(x_1, x_2 + h_2, \cdots, x_n + h_n) - f(x_1, x_2, x_3 + h_3, \cdots, x_n + h_n) + \cdots \\ &+ f(x_1, \cdots, x_{n-1}, x_n + h_n) - f(x_1, \cdots, x_{n-1}, x_n)| \end{aligned}$$

By mean value theorem, there exists a $t_i \in (x_i - \delta_i, x_i + \delta_i)$ for all *i* such that $(x_1 - \delta_1, x_1 + \delta_1) \times \cdots \times (x_n - \delta_n, x_n + \delta_n) \subset E$ and

$$|f(x_1 + h_1, \cdots, x_n + h_n) - f(x_1, \cdots, x_n)|$$

= $|h_1 \partial_1 f(x_1, x_2 + h_2, \cdots, x_n + h_n)$
+ $h_2 \partial_2 f(x_1, x_2, x_3 + h_3, \cdots, x_n + h_n) + \cdots$
+ $h_n \partial f(x_1, \cdots, x_{n-1}, x_n)|$
 $\leq M(|h_1| + \cdots + |h_n|)$

Hence the continuity.